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Introduction 

The realm of medical imaging is profoundly 

influenced by Computed Tomography (CT), an 

indispensable modality providing detailed cross-

sectional anatomical images for diagnosing various 

medical conditions (Shahbazian and Jacobs, 2012; 

Nagarajan et al., 2014). Despite its efficacy, 

challenges surrounding CT image quality such as 

noise, artifacts, and exposure parameter 

inconsistencies persist (Van Timmeren.et al., 2020). 

Conventionally, quality assessment entails subjective, 

time-consuming manual inspection by radiologists.  

Embracing machine learning (ML) which is a subfield 

of artificial intelligence that centers on using  

 

Algorithms to draw inference and find patterns in data, 

as a viable alternative promises automated, precise 

quality assessment and heightened diagnostic accuracy 

(De Groof et al., 2020; Edenbradt et al., 2022; Sahiner 

et al., 2019). The significance of medical imaging in 

disease diagnosis and treatment is undeniable, with CT 

imaging leading the forefront. ML models demonstrate 

immense promise in refining imaging parameters for 

enhanced anatomical visualization via noise reduction 

and artifact detection (You et al., 2019; Kidoh et al., 

2020). Precise organ segmentation in abdominal CT 

scans holds pivotal significance in understanding 

disease progression and devising tailored treatment 

strategies (Sanchez and Gores, 2009).  

ABSTRACT 

The significance of medical imaging in disease diagnosis and treatment is undeniable, with Computed Tomography (CT) imaging 

leading the forefront. ML reveals organ abnormalities, lung conditions, and skull changes clinically. This investigation focuses 

on the application of machine learning techniques within medical imaging, specifically targeting the assessment of CT image 

quality in vital anatomical regions such as the abdomen, chest, and skull. The primary goal is to forge a robust and precise 

technique that can thoroughly evaluate CT image quality, offering an early identification mechanism for potential diagnostic 

discrepancies and elevating the standards of patient care. This study harnesses state-of-the-art machine learning approaches to 

comprehensively explore the efficacy and dependability of CT imaging modalities. Utilizing Machine Learning to discern effects 

of CT scan parameters on DLP and CTDIvol, uncovering hidden patterns in images. There are promising prospects for refining 

diagnostic precision, streamlining patient care protocols, and ultimately augmenting clinical outcomes. This investigation into 

ML-driven CT image quality analysis yielded promising outcomes. ML reveals how CT scan parameters influence DLP and 

CTDIvol, guiding adjustments for optimal image quality and patient safety. This research not only substantiates the remarkable 

capabilities of machine learning but also underscores its pivotal role in reshaping the landscape of medical imaging. The result 

underscores the need for refined ML-based CT image quality analysis techniques, aiming to bridge existing gaps and deliver 

more precise diagnoses while advancing healthcare delivery. The implications of the findings (The highest mean scan length are 

64.36cm, 62cm, and 169.01cm for abdomen, chest, and skull respectively while the highest mean pitch are 1.60,1.63 and 0.65 for 

abdomen, chest and skull respectively)  transcend conventional radiology domains, signaling the advent of a novel era where 

artificial intelligence collaborates synergistically with human expertise to attain unprecedented excellence in healthcare delivery.  
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ML-driven deep learning models, when applied to 

chest imaging analysis, excel in identifying pulmonary 

abnormalities with remarkable sensitivity and 

specificity. Similarly, the application of ML 

algorithms in skull CT imaging accurately identifies 

cranial anomalies, vital for detecting conditions like 

brain tumors or traumatic injuries (Wang and Bovik, 

2006; Bouxsein et al., 2010; Hoy et al., 2012). ML-

based approaches have extended to optimizing 

treatment plans, accounting for individual patient 

characteristics and anatomical features derived from 

CT imaging (Takam et al., 2020; O’malley et al., 

2005; Litjens et al, 2017). Such advancements promise 

heightened treatment efficacy and minimized radiation 

exposure and side effects. Prior studies emphasized the 

importance of meticulously verifying clinical trial 

data. While previous studies have made strides in CT 

image quality assessment using ML, achieving 

consistent results across diverse scans and anatomical 

regions remains an ongoing challenge (Wang and 

Bovik, 2006; Bouxsein et al., 2010; Hoy et al., 2012 

and Rajpurkar et al., 2022).                

Despite technological strides, CT image quality 

analysis remains a critical domain fraught with 

challenges (McCollough et al., 2009; Scarfe and 

Farman, 2008; Abbara et al., 2016). The potential 

impact of enhanced CT image quality on patient 

outcomes and diagnostic accuracy fuels the 

significance of ML-based image analysis (Tatsugami 

et al., 2019; Rompianesi et al., 2022; Choe et al., 

2022). Thus, meticulous evaluation of CT image 

quality becomes paramount to ensure reliability and 

enhance diagnostic precision. Machine learning (ML) 

algorithms have emerged as formidable tools in 

medical imaging research, offering substantial 

potential in revolutionizing CT image analysis (Luo et 

al., 2016 ; Greenspan et al., 2016; Kulkari et al., 2020 

and Geras et al., 2019).  

This study intends to offer new insights into how ML 

approaches can amplify existing CT image analysis 

practices. Analyzing multiple anatomical regions—

abdomen, chest, and skull—aims to decipher ML's 

role from image formation to scanning parameter 

influence. A comprehensive understanding of ML's 

advantages and limitations will refine decision support 

systems for radiological evaluations, ultimately 

enhancing care quality while curbing healthcare costs.  

 

This research aims to delve deeper into understanding 

the unique challenges of each anatomical region, 

consequently improving overall image quality 

assessment. This research endeavors to employ ML 

techniques for analyzing CT image quality in the 

abdomen, chest, and skull regions. By leveraging these 

computational methods on extensive datasets from 

diverse patients, we aim not only to assess their 

effectiveness but also to ascertain their potential in 

augmenting diagnostic accuracy while prioritizing 

patient safety.  

In addressing the challenge of precisely evaluating CT 

image quality in abdominal, chest, and skull scans, this 

study aims to establish a methodology surpassing 

existing solutions. The objective is to construct a 

framework employing machine learning (ML) 

techniques, leveraging Scikit-learn, a Python-based 

library. This framework aims to comprehensively 

dissect various CT scanning parameters and their 

influence on essential image quality metrics. This 

study will also explore how these advanced 

computational techniques contribute to improving 

overall image quality by reducing noise levels, 

enhancing contrast resolution, and addressing artifacts 

commonly encountered in abdominal scans as well as 

those acquired from the chest and skull areas. The aim 

is to optimize image interpretation while minimizing 

any potential risks associated with misdiagnosis or 

unnecessary additional examinations.  

 

Materials and Methods  

Ethical Approval  

In this study, ethical approval was secured from the 

relevant institutions, Federal Medical Centre, 

Yenagoa, Intercontinental Diagnostic Centre, Port 

Harcourt, Image Diagnostic, Port Harcourt and Uyo, 

Georges Diagnostic Centre Limited, Port Harcourt, 

University of Port Harcourt Teaching Hospitals, Port 

Harcourt, Orange Medical Diagnostic, Port Harcourt, 

University of Calabar Teaching Hospital, Calabar, 

Benin Medical care, Benin, and Westend Hospital, 

Warri, Delta State ensuring adherence to ethical 

standards and participant welfare. The approval 

process involved a comprehensive review, affirming 

the commitment to ethical conduct in medical physics 

research. 
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Collection of Computed Tomography (CT) Scans 

and Image Quality Standards 

A dataset comprising of two thousand, eight hundred 

and twenty-eight (2828) CT scans sourced from ten 

medical institutions forms the study's foundation from 

Federal Medical Centre, Yenagoa, Intercontinental 

Diagnostic Centre, Port Harcourt, Image Diagnostic, 

Port Harcourt and Uyo, Georges Diagnostic Centre 

Limited, Port Harcourt, University of Port Harcourt 

Teaching Hospitals, Port Harcourt. Orange Medical 

Diagnostic, Port Harcourt, University of Calabar 

Teaching Hospital, Calabar, Benin Medical care, 

Benin, and Westend Hospital, Warri, Delta State. 

These scans underwent stringent radiologist 

assessment to adhere to stringent image quality 

standards. The dataset captures a diverse array of CT 

parameters and metrics, including kV, mAs, slice 

thickness, pitch, image uniformity, CT number 

variation, and low contrast resolution. Utilizing the 

functionalities of Scikit-learn, renowned for its 

prowess in regression and classification tasks in 

machine learning, an exhaustive analysis was 

conducted. The focus was on unraveling the intricate 

relationships between CT scan parameters and critical 

image quality metrics such as Dose Length Product 

(DLP) and CTDI vol.  

Regression models 

Robust regression models were applied to unravel the 

intricate relationships between CT scan parameters 

and critical image quality metrics such as Dose Length 

Product (DLP) and CTDI vol. This is to enable the 

discernment of nuanced correlations.  

Preliminary Planning and Objective Setting 

Defined the overarching goal: Precisely evaluated and 

comprehend the relationships between CT scanning 

parameters and image quality metrics. Established 

specific research objectives: Investigated how various 

CT parameters affect image quality metrics using 

machine learning techniques.  

Data Collection and Curation 

Source of comprehensive dataset: Collected CT scans 

encompassing abdominal, chest, and skull regions, 

from diverse sources ensuring a broad representation 

of imaging parameters and image quality metrics. To 

ensure rigorous quality control, the radiologists of the 

various institutions, assessed and validated the 

collected CT scans to meet predefined image quality 

standards. 

 

Dataset Preparation and Feature Extraction 

Preprocessed the collected dataset: Standardized and 

preprocessed CT scan data, ensuring consistency in 

format and structure. Extracted relevant features were 

isolated and categorized CT parameters such as kV, 

mAs, slice thickness, pitch, image uniformity, CT 

number variation, and low contrast resolution. 

Machine Learning Model Development 

Appropriate ML models of regression models within 

Scikit-learn suitable for correlating CT scanning 

parameters with image quality metrics (e.g., DLP, 

CTDI vol) were selected for the study. The models 

were trained and optimized using the prepared dataset, 

and adjusting hyper-parameters for optimal 

performance in discerning correlations. 

Data Analysis and Correlation Investigation 

Applied trained models: Use the trained ML models to 

analyze the dataset, uncovering intricate relationships 

between CT scan parameters and image quality 

metrics. Evaluated correlations: Assessed the strength 

and significance of correlations between CT 

parameters and image quality metrics, utilizing 

regression analysis.  

Result Interpretation and Insights Generation  

The findings from the investigation were interpreted. 

Derived insights from identified correlations, 

highlighting significant relationships between specific 

CT parameters and image quality metrics. Analyzed 

the impact: Discuss implications for healthcare 

settings, potential optimization of CT imaging 

protocols, and ways to mitigate radiation exposure 

without compromising diagnostic quality. 

Results  

In the realm of image quality assessment, our 

investigation delved into the intricate dynamics of 

Computed Tomography Dose Index (CTDI) and Dose 

Length Product (DLP), primarily concerning their 

association with pitch and scan length. The 

comprehensive outcomes of this analysis are vividly 

illustrated through Figures 1 to 12, while Table 1 

meticulously elucidates the specific scanning 

configurations adopted in this study. 
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Table 1: The Scanning Parameters for Image Quality Analysis of Multiple Anatomical Regions of the Abdomen, Chest, and Skull 

Key: kV =Kilovoltage  ; mAs = Milliampere-Seconds

Facilities Abdomen Chest Skull 

Institutions Mean  

Scan Length 

Mean 

Pitch 

Mean 

kV 

Mean  

mAs 

Mean 

Scan Length 

Mean 

Pitch 

Mean 

kV 

Mean  

mAs 

Mean   

 Scan Length 

Mean 

Pitch 

Mean 

kV 

Mean  

mAs 

1 17.12 0.65 120 170.94 43.59 1.30 120 233.02 189.3 0.52 120 234.45 

2 40.08 1.40 120 147.25 18.08 1.40 120 186.32 169.01 0.53 120 256.45 

3 62.16 1.60 120 94.4 62 1.60 120 91.77 65.85 0.55 120 90.02 

4 39.88 0.55 130 90.43 38.8 1.30 130 88.5 22.08 0.55 130 156.77 

5 5.26 0.80 110 232.92 5.27 1.50 110 103.61 2.56 0.55 110 220 

6 39.58 0.64 120 99.81 38.38 1.40 120 90.51 22.03 0.64 120 161.2 

7 52.29 0.60 120 132.28 55.54 1.30 120 77.75 63.58 0.60 120 102.49 

8 21.85 0.70 130 185.29 16.89 1.40 130 169.34 18.41 0.65 130 92.22 

9 64.36 0.60 120 189.11 43.86 1.30 120 163.31 22.05 0.62 120 102.66 

10 21.94 0.62 120 91.95 17.94 1.63 120 157.39 39 0.62 120 192.05 
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Fig.1: Scatter Plot of Dose Length Product (DLP) against Pitch for Abdomen 

 

 

 

 

Fig. 2: Scatter Plot of Dose Length Product (DLP) against Scan Length for Abdomen 
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Fig. 3: Scatter Plot of CT Dose Index (CTDI) Vol against Scan Length for Abdomen 

 

 

 

Fig. 4: Scatter Plot of CT Dose Index (CTDI) Vol against Pitch for Abdomen 
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Fig. 5: Scatter Plot of Dose Length Product (DLP) against Scan Length for Chest 

 

 

 

 

Fig. 6: Scatter Plot of Dose Length Product (DLP) against Pitch for Chest 
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Fig. 7: Scatter Plot of CT Dose Index (CTDI) Vol against Scan Length for Chest 

 

 

 

 

Fig. 8: Scatter Plot of the CT Dose Index (CTDI) Vol at against Pitch for Chest 
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Fig. 9:  Scatter Plot of Dose Length Product (DLP) against Scan Length for Skull 

 

 

 

 

 

Fig. 10: Scatter Plot of Dose Length Product (DLP) against Scan Length for Skull 
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Fig. 11: Scatter Plot of CT Dose Index (CTDI) Vol against Pitch for Skull 

 

 

 

Fig. 12: Scatter Plot of CT Dose Index (CTDI) Vol against Scan Length for the Skull 
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Discussion 

This study highlighted how machine learning 

technique can effectively extract meaningful 

information from Computed Tomography (CT) images 

by automatically identifying relevant features and 

patterns. This capability has the potential to assist 

radiologists in making accurate diagnoses and 

facilitating timely interventions. In the abdomen, ML 

can reveal subtle patterns related to organ morphology, 

such as the liver, spleen, and kidneys, which can aid in 

the early detection of tumors or abnormalities. In the 

chest, ML can uncover patterns indicative of lung 

nodules, consolidations, or other pulmonary conditions 

that may not be immediately apparent. In the skull, 

ML can detect subtle changes in bone density or 

structure, which may indicate conditions such as 

fractures, tumors, or degenerative diseases. 

The Dose Length Product (DLP) constitutes a 

cumulative measure of radiation exposure in CT scans, 

derived from the product of the dose per scan and the 

scan length. On the other hand, the pitch, also 

recognized as the table feed, represents the ratio of 

table speed to the X-ray collimation width. Higher 

pitch values expedite scan times but potentially 

compromise image quality. The variability observed in 

scan length, pitch, and DLP across distinct institutions 

is attributed to several factors. These include the CT 

scanner type, patient physiology, anatomical 

variations, and the clinical necessity for the scan. 

Generally, extended scans tend to elevate DLP, while 

lower pitch values correspond to reduced DLP due to 

prolonged X-ray emission and wider beam coverage, 

respectively. Nevertheless, the relationship between 

DLP, pitch, and scan length isn't consistently linear. 

Noteworthy research by Almujally et al. (2023) and 

Lestariningsih et al. (2019) revealed higher DLP for 

skull CTs compared to chest CTs, largely due to the 

former necessitating higher kV and mAs. Conversely, 

investigations by Quadah et al. (2017) and Duan et al. 

(2020) reported reduced DLP for scans conducted at 

lower pitches, attributed to slower scan rates that 

mitigate the dose per scan.  

In the comprehensive analysis, significant variations in 

scanning parameters were apparent, especially in 

abdomen, chest, and skull scans. Higher pitch values 

demonstrated increased table feed rates and expanded 

slice intervals, impacting radiation dose and image 

contrast in accordance with Ehsan et al., (2020) and 

Lestariningsih et al. (2019).  

The careful selection of kV and mAs is crucial in 

balancing image quality against radiation dose. The 

absence of a direct linear correlation between CT Dose 

Index (CTDI) and pitch suggests that factors beyond 

pitch values contribute to radiation exposure variations 

in CT scans in agreement with Emmanual et al., 

(2019).  

Similarly, the lack of significant correlation between 

mean scan length and CTDI implies a multifaceted 

interplay among multiple determinants influencing 

CTDI values. The influential factors, apart from pitch 

and scan length that play crucial roles in determining 

radiation exposure in CT scans include;  

Patient-specific Characteristics: Variances in patient 

size, body composition, and anatomical structures 

significantly impact radiation absorption rates in 

agreement with Xiyu et al, (2022). Patients with larger 

body sizes or different anatomies may absorb or 

scatter radiation differently, leading to fluctuations in 

radiation exposure. 

Scanner-specific Factors: The characteristics and 

technical specifications of the CT scanner, such as 

tube voltage (kV), tube current (mA), collimation, and 

detector configuration, influence the intensity and 

distribution of X-ray beams, affecting radiation 

exposure in conformity with Kalra et al., (2004) 

Scan Protocols and Techniques: Variations in scanning 

protocols, such as exposure parameters, scan modes 

(e.g., sequential or helical), and imaging settings, can 

substantially affect radiation doses. Differences in 

protocols among institutions or clinicians may 

contribute to variations in radiation exposure levels in 

conformity with Smith -Bindman et al., (2022). 

Image Reconstruction Algorithms: Various image 

reconstruction algorithms employed in CT imaging 

affect the noise, resolution, and overall image quality. 

Optimizing these algorithms might involve trade-offs 

between image quality and radiation dose, thereby 

influencing radiation exposure which verify the claims 

of Lambert et al., (2014).  

Radiation Dose Modulation Techniques: Advanced 

dose modulation techniques, like automatic exposure 

control or tube current modulation, dynamically adjust 

radiation doses based on the patient's anatomy during 

scanning (Ramirez – Giraldo et al., (2014). Variability 

in the application or effectiveness of these techniques 

impacts radiation exposure.  
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Radiation Shielding and Positioning: Correct 

positioning of patients during scans and the use of 

shielding materials or techniques to protect sensitive 

organs affect the amount of radiation absorbed and 

scattered, thus influencing overall exposure levels 

(Martin et al., 2017). These factors interact in a 

complex manner, contributing to variations in CTDI 

values despite the absence of a direct linear 

relationship with pitch or scan length (Goldman, 

2007). Understanding these multifaceted influences is 

crucial for optimizing CT imaging protocols and 

minimizing radiation exposure while maintaining 

diagnostic image quality.  

The study underscores the importance of optimizing 

scanning parameters and radiation doses to uphold CT 

image quality standards. Machine learning algorithms 

enabled the discernment of subtle trends in image 

quality metrics, enhancing patient safety and 

diagnostic precision (Najj, 2023). Moving forward, 

further research and standardization efforts are 

necessary to formulate comprehensive guidelines for 

optimal scanning parameters and radiation dosage 

across medical institutions, highlighting the potential 

of machine learning in automating CT image quality 

assessment. 

In conclusion, this study contributes to the field of 

medical physics by demonstrating the potential of 

machine learning in evaluating CT image quality in 

abdomen, chest, and skull regions. The findings of this 

study offer insights into the complex interplay 

between CT scanning parameters and resultant image 

quality metrics. These insights hold promise for 

healthcare decision-makers, empowering them to 

optimize CT imaging protocols to mitigate radiation 

exposure while maintaining diagnostic image quality. 

The findings underscore the significance of developing 

automated tools for image quality assessment, 

ultimately enhancing diagnostic accuracy and patient 

care. This research contributes to substantiating 

enhancements in CT imaging strategies. By 

elucidating relationships between scanning parameters 

and image quality metrics, the comprehensive analysis 

and visualization techniques lay a foundation for 

future advancements in imaging protocols, elevating 

standards of patient care and diagnostic precision in 

medical imaging. Analysis of CT image quality in the 

abdomen, chest, and skull using machine learning 

techniques is a groundbreaking approach that holds 

significant potential for advancing medical imaging. 

Through this research endeavor, valuable insights into 

the effectiveness of applying machine learning 

techniques to enhance diagnostic accuracy, their 

potential impact on clinical decision-making processes 

and improve patient care has been established.  
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